Answer:
21.3 V, 1.2 A
Explanation:
1.
These resistors are in series, so the net resistance is:
R = R₁ + R₂ + R₃
R = 20 + 30 + 45
R = 95
So the current is:
V = IR
45 = I (95)
I = 9/19
So the voltage drop across R₃ is:
V = IR
V = (9/19) (45)
V ≈ 21.3 V
2.
First, we need to find the equivalent resistance of R₂ and R₃, which are in parallel:
1/R₂₃ = 1/R₂ + 1/R₃
1/R₂₃ = 1/10 + 1/10
R₂₃ = 5
Now we find the overall resistance by adding the resistors in series:
R = R₁ + R₂₃ + R₄
R = 10 + 5 + 10
R = 25
So the current through R₁ is:
V = IR
30 = I (25)
I = 1.2 A
Answer:
Explanation:
Let the angle between the first polariser and the second polariser axis is θ.
By using of law of Malus
(a)
Let the intensity of light coming out from the first polariser is I'
.... (1)
Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.
By the law of Malus
So,
(b)
Now differentiate with respect to θ.
Answer:
Use the right-hand rule for magnetic force to determine the charge on the moving particle.
This is a
negative
charge
Explanation:
Answer:
44.7 N
Explanation:
The gravitational force between the objects is given by:
where
G is the gravitational constant
m and M are the masses of the two objects
r is the distance between the centres of the two objects
In this problem, we have:
is the mass of the sphere
is the Earth's mass
is the Earth's radius, while h=310 km is the altitude of the sphere, so the distance of the sphere from Earth's centre is
Substituting into the equation, we find