Data Given:
Pressure = P = 0.5 atm
Volume = V = 2.0 L
Temperature = T = 50 °C + 273 = 323 K
Moles = n = ?
Solution:
Let suppose the gas is acting Ideally, Then According to Ideal Gas Equation.
P V = n R T
Solving for n,
n = P V / R T
Putting Values,
n = (0.5 atm × 2.0 L) ÷ (0.0821 atm.L.mol⁻¹.K⁻¹ × 323 K)
n = 0.0377 mol
Answer:
The group 15 elements: the pnicogens
Explanation:
The group 15 elements, nitrogen, phosphorus, arsenic, antimony and bismuth, all have the general valence shell electronic configuration ns2np3. They can all exist in the +3 or +5 oxidation state, with the +3 state increasing in stability as we move vertically down the group.
Ag+ and Pb+2 are two cations that are suggested as producing insoluble halide salts when studying salts containing the halide anions, cl- and br-. First, the charge's number is provided.
Neutral binary salts, also referred to as halide salts, are mixtures of metals and non-metals. The non-metal behaves in a reduced oxidation state at all times. They are the outcome of mixing a hydroxide and hydracid. halide salts of haloids are produced by the reaction of a hydroxide and a hydracid.
Ions are cations with positive charges. They emerge when the electrons of an elemental metal are lost. However, they don't lose any protons; they only lose one or more electrons. To denote a cation, the charge is superscripted following the element name or chemical formula.
Learn more about halide salts here
brainly.com/question/20815131
#SPJ4
Answer : q = 6020 J, w = -6020 J, Δe = 0
Solution : Given,
Molar heat of fusion of ice = 6020 J/mole
Number of moles = 1 mole
Pressure = 1 atm
Molar heat of fusion : It is defined as the amount of energy required to melt 1 mole of a substance at its melting point. There is no temperature change.
The relation between heat and molar heat of fusion is,
(in terms of mass)
or, (in terms of moles)
Now we have to calculate the value of q.
When temperature is constant then the system behaves isothermally and Δe is a temperature dependent variable.
So, the value of
Now we have to calculate the value of w.
Formula used :
where, q is heat required, w is work done and is internal energy.
Now put all the given values in above formula, we get
w = -6020 J
Therefore, q = 6020 J, w = -6020 J, Δe = 0