<span>The </span>abundance of a chemical element<span> is a measure of the </span>occurrence<span> of the </span>element<span> relative to all other elements in a given environment. Abundance is measured in one of three ways: by the </span>mass-fraction<span> (the same as weight fraction); by the </span>mole-fraction<span> (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the </span>volume-fraction<span>. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and </span>ideal gas<span> mixtures. Most abundance values in this article are given as mass-fractions.
</span>
Answer:
C₆H₈O₆
Explanation:
First off, the<u> percent of oxygen by mass</u> of vitamin C is:
- 100 - (40.9+4.58) = 54.52 %
<em>Assume we have one mol of vitamin C</em>. Then we would have <em>180 grams</em>, of which:
- 180 * 40.9/100 = 73.62 grams are of Carbon
- 180 * 4.58/100 = 8.224 grams are of Hydrogen
- 180 * 54.52/100 = 98.136 grams are of Oxygen
Now we <u>convert each of those masses to moles</u>, using the <em>elements' respective atomic mass</em>:
- C ⇒ 73.62 g ÷ 12 g/mol = 6.135 mol C ≅ 6 mol C
- H ⇒ 8.224 g ÷ 1 g/mol = 8.224 mol H ≅ 8 mol H
- O ⇒ 98.136 g ÷ 16 g/mol = 6.134 mol O ≅ 6 mol O
So the molecular formula for vitamin C is C₆H₈O₆
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V