Answer:
3 m/s
Explanation:
We'll begin by calculating the change in displacement of the jogger. This can be obtained as follow:
Initial displacement (d₁) = 4 m
Final displacement (d₂) = 16 m
Change in displacement (Δd) =?
Δd = d₂ – d₁
Δd = 16 – 4
Δd = 12 m
Finally, we shall determine the determine the average velocity. This can be obtained as follow:
Change in displacement (Δd) = 12 m
Time (t) = 4 s
Velocity (v) =?
v = Δd / t
v = 12 / 4
v = 3 m/s
Thus, the average velocity of the jogger is 3 m/s
Answer:
speed of golf ball is 1.15 × m/s
and % of uncertainty in speed = 2.07 × %
Explanation:
given data
mass = 45.9 gram = 0.0459 kg
speed = 200 km/hr = 55.5 m/s
uncertainty position Δx = 1 mm = m
to find out
speed of the golf ball and % of speed of the golf ball
solution
we will apply here heisenberg uncertainty principle that is
uncertainty position ×uncertainty momentum ≥ ......1
Δx × ΔPx ≥
here uncertainty momentum ΔPx = mΔVx
and uncertainty velocity = ΔVx
and h = 6.626 × Js
so put here all these value in equation 1
× 0.0459 × ΔVx =
ΔVx = 1.15 × m/s
and
so % of uncertainty in speed = ΔV / m
% of uncertainty in speed = 1.15 × / 55.5
% of uncertainty in speed = 2.07 × %
D. write down the coefficients
If an asteroid were to strike land or a shallow body of water, it would eject an enormous amount of dust, ash, and other material into the atmosphere, blocking the radiation from the Sun. This would cause the global temperature to decrease drastically..