Answer:
3200°F
Explanation:
just add two zero's to the end
A cart is pulled by horizontal force such that it moves with constant velocity
So here since velocity is constant we can say that its acceleration will be ZERO
now here for zero acceleration we can say
So here we will have
here we know that
so we will have
so here applied force on handle will be
<em>b. 10 N</em>
The mass of the cold water, given the data from the question is 500 g
<h3>Data obtained from the question</h3>
- Mass of warm water (Mᵥᵥ) = 200 g
- Temperature warm water (Tᵥᵥ) = 75 °C
- Temperature of cold water (T꜀) = 5 °C
- Equilibrium temperature (Tₑ) = 25 °C
- Specific heat capacity of the water = 4.184 J/gºC
- Mass of cold water (M꜀) =?
<h3>How to determine the mass of the cold water </h3>
Heat loss = Heat gain
MᵥᵥC(Tᵥᵥ – Tₑ) = M꜀C(Tₑ – T꜀)
200 × 4.184 (75 – 25) = M꜀ × 4.184(25 – 5)
41840 = M꜀ × 83.68
Divide both side 83.68
M꜀ = 41840 / 83.68
M꜀ = 500 g
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
Answer:
The answer to your question is Alpha particles.
Explanation: An electron released by a radioactive nucleus that causes a neutron to change into a proton is called a beta particle.
Explanation:
<em>"The accuracy of a potentiometer can be increased by decreasing the potential gradient across the potentiometer wire, and this can be achieved by increasing the length"</em>
<em />
<u>The factors that are affecting/limiting the accuracy of the potentiometer are:
</u>
-
The specific resistance of the material of the potentiometer wire.
- The potential gradient
- The current passing through the potentiometer wire.
- Area of a cross-section of the wire
- Internal temperature.
<u>The objective of reversing the terminals of the cell</u>
If the jockey of the potentiometer is pressed for a long time, joule heating sets in, so that reversing the terminals of the potentiometer will prevent the resistance due to joule heat from being added to the measured resistance, ultimately preventing unwanted resistance