P = 2(L + W)
P = 400
L = W + 40
400 = 2(W + 40 + W)
400 = 2(2W + 40)
400 = 4W + 80
400 - 80 = 4W
320 = 4W
320/4 = W
80 = W.....so the width (W) = 80 yards
L = W + 40
L = 80 + 40
L = 120...and the length (L) = 120 yards
Percentage increase= $768÷32000=0.024
=0.024×100=2.4%
Given:
The base of 40-foot ladder is 8 feet from the wall.
To find:
How high is the ladder on the wall (round to the nearest foot).
Solution:
Ladder makes a right angle triangle with wall and ground.
We have,
Length of ladder (hypotenuse)= 40 foot
Base = 8 foot
We need to find the perpendicular to get the height of the ladder on the wall.
Let h be the height of the ladder on the wall.
According to the Pythagoras theorem,
Taking square root on both sides.
Height cannot be negative. Round to the nearest foot.
Therefore, the height of the ladder on the wall is 39 foot.
Answer:
A
Step-by-step explanation:
A= r(pi)^2
A= 9 pi ^2
Hope it helps!
Answer:
=7.071068
Step-by-step explanation
subtract the x values and y values and square them then add them together and find it's square root