To determine the absolute pressure of this gas, all you need to do is to add the value of atmospheric pressure and the value of gage pressure.
Atmospheric pressure is equivalent to 100 kPa.
Gage pressure is 276 kPa.
Then, we add both values.
N = 100 kPa + 276 kPa
N = 376 kPa
The absolute pressure of this gas is 376 kPa.
Hope this helps :)
Explanation:
so moles = mass ÷ mr (1+ 79.9)
so 10.00g ÷ 80.9
which is 0.1236093943
so to 3 S.F is 0.124 moles
also there is 1 to 1 ratio for LiOH to HBr
hope this helps :)
Answer:
P₂ = 13.9 atm (3 sig. figs.)
Explanation:
The pressure (P), Volume (V) relationship with Temperature (T) & mass (n) held constant is an inverse proportionality. That is Boyles Law ...
P ∝ 1/V => P = k/V => k = P·V
For two pressure-volume conditions, the proportionality constant (k) remains constant where k₁ = k₂ and P₁·V₁ = P₂·V₂ => P₂ = P₁·V₁/V₂
Given:
P₁ = 1.31 atm.
V₁ = 5.51 L
P₂ = ?
V₂ = 0.520 L
V₂ = (1.31 atm)(5.51L)/(0.520L) = 13.88096154 atm (calc. ans.) = 13.9 atm (3 sig. figs.)
If X is an equivalent base to H₂O
HX is an equivalent acid to H₃O⁺
HX is a stronger acid than H₃O⁺
HX is not an acid
X⁻ is a stronger base than H₂O
HX is a weaker acid than H₃O⁺
X⁻ is a weaker base than H₂O
X⁻ is not a base.
The correct response or this is
X⁻ is a stronger base than H₂O
HX is a weaker acid than H₃O⁺
70.306 would be your answer.