There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.
Answer:
Explanation:
Mass of a hockey puck, m = 0.17 kg
Force exerted by the hockey puck, F' = 35 N
The force of friction, f = 2.7 N
We need to find the acceleration of the hockey puck.
Net force, F=F'-f
F=35-2.7
F=32.3 N
Now, using second law of motion,
F = ma
a is the acceleration of the hockey puck
So, the acceleration of the hockey puck is .
Answer: When volume is constant, pressure is directly proportional to temperature. When temperature is constant, pressure is inversely proportional to volume. When pressure is constant, volume is directly proportional to temperature.
Explanation: