Answer:
6840 N
Explanation:
The force acting on the car can be found by using Newton's second law:
F = ma
where
F is the net force on the car
m is the mass of the car
a is its acceleration
For the car in this problem,
m = 1800 kg
Substituting,
Answer:
Fn: magnitude of the net force.
Fn=30.11N , oriented 75.3 ° clockwise from the -x axis
Explanation:
Components on the x-y axes of the 17 N force(F₁)
F₁x=17*cos48°= 11.38N
F₁y=17*sin48° = 12.63 N
Components on the x-y axes of the the second force(F₂)
F₂x= −19.0 N
F₂y= 16.5 N
Components on the x-y axes of the net force (Fn)
Fnx= F₁x +F₂x= 11.38N−19.0 N= -7.62 N
Fny= F₁y +F₂y= 12.63 N +16.5 N = 29.13 N
Magnitude of the net force.
Direction of the net force (β)
β=75.3°
Magnitude and direction of the net force
Fn= 30.11N , oriented 75.3 ° clockwise from the -x axis
In the attached graph we can observe the magnitude and direction of the net force
Answer:
The maximum speed will be 26.475 m/sec
Explanation:
We have given mass of the toy m = 0.50 kg
radius of the light string r = 1 m
Tension on the string T = 350 N
We have to find the maximum speed without breaking the string
For without breaking the string tension must be equal to the centripetal force
So
So
v = 26.475 m /sec
So the maximum speed will be 26.475 m/sec
Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity . If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.