Answer : The final pressure of the system in atm is, 3.64 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.
or,
where,
= first pressure = 8.19 atm
= second pressure = 2.65 atm
= first volume = 2.14 L
= second volume = 9.84 L
= final pressure = ?
= final volume = 2.14 L + 9.84 L = 11.98 L
Now put all the given values in the above equation, we get:
Therefore, the final pressure of the system in atm is, 3.64 atm
Answer: An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Explanation: To find the answer, we need to know about the Ammeter and Voltmeter.
<h3>What is an ammeter?</h3>
- An ammeter is a device, that can be used to measure the electric current flows through a circuit in amperes.
- An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance when it is connected in series to measure the current.
<h3>What is voltmeter?</h3>
- A voltmeter is a device, that can be used to measure the electric potential difference generated between the terminals of an electric circuit in volts.
- An ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter, when it is connected in parallel to measure the voltage.
Thus, we can conclude that, an ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Learn more about the ammeter and voltmeter here:
brainly.com/question/28044897
#SPJ4
If we use the equation:
N2 + 3H2 --> 2NH3
Then
1 mol of Nitrogen required 3 moles of Hydrogen
x mols : 6.34mols
X = 6.34/3
X = 2.11 moles of Nitrogen are required.