First do with the factor out variable m.
m(k+q)=t
Next divide both sides of k+q.
m(k+q)/k+q= t/k+q
Answer is m=t/k+q
The maximum revenue generated is $160000.
Given that, the revenue function for a sporting goods company is given by R(x) = x⋅p(x) dollars where x is the number of units sold and p(x) = 400−0.25x is the unit price. And we have to find the maximum revenue. Let's proceed to solve this question.
R(x) = x⋅p(x)
And, p(x) = 400−0.25x
Put the value of p(x) in R(x), we get
R(x) = x(400−0.25x)
R(x) = 400x - 0.25x²
This is the equation for a parabola. The maximum can be found at the vertex of the parabola using the formula:
x = -b/2a from the parabolic equation ax²+bx+c where a = -0.25, b = 400 for this case.
Now, calculating the value of x, we get
x = -(400)/2×-0.25
x = 400/0.5
x = 4000/5
x = 800
The value of x comes out to be 800. Now, we will be calculating the revenue at x = 800 and it will be the maximum one.
R(800) = 400x - 0.25x²
= 400×800 - 0.25(800)²
= 320000 - 160000
= 160000
Therefore, the maximum revenue generated is $160000.
Hence, $160000 is the required answer.
Learn more in depth about revenue function problems at brainly.com/question/25623677
#SPJ1
Answer:
function
Step-by-step explanation:
Since m < 1 and m < 2 are complementary angles wherein the measure of their angles add up to 90°, we can establish the following equation:
m < 1 + m < 2 = 90°
x° + 48° + 2x° = 90°
Combine like terms:
48° + 3x° = 90°
Subtract 48° from both sides:
48° - 48° + 3x° = 90° - 48°
3x = 42°
Divide both sides by 3 to solve for x:
3x/3 = 42/3
x = 14°
Plug in the value of x into the equation to fins m< 1 and m < 2:
m < 1 + m < 2 = 90°
(14° + 48°) + 2(14)° = 90°
62° + 28° = 90°
90° = 90° (True statement)
Therefore:
m < 1 = 62°
m < 2 = 28°
The point in between is (1,2)