Answer:
=24.25 ^−1
Explanation:
Let and be initial and final velocity of the body respectively,
be acceleration due to gravity ( 9.8^−2 ), ℎ be the height of the body.
=0 ^ −1
ℎ=30
we know that, ^2−^ 2=2ℎ
^2=2∗9.8∗30
^2=588
=24.25 ^−1
Answer:
1. a
b
c
2.
Explanation:
a). The work done by the tension is:
b). The work done potential of gravity
c). The work done by the normal force
2. The increase in thermal energy is:
Answer:
182 to 3 s.f
Explanation:
Workdone for an adiabatic process is given as
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
where γ = ratio of specific heats. For carbon dioxide, γ = 1.28
For an adiabatic process
P₁V₁ʸ = P₂V₂ʸ = K
K = P₁V₁ʸ
We need to calculate the P₁ using ideal gas equation
P₁V₁ = mRT₁
P₁ = (mRT₁/V₁)
m = 2.80 g = 0.0028 kg
R = 188.92 J/kg.K
T₁ = 27°C = 300 K
V₁ = 500 cm³ = 0.0005 m³
P₁ = (0.0028)(188.92)(300)/0.0005
P₁ = 317385.6 Pa
K = P₁V₁¹•²⁸ = (317385.6)(0.0005¹•²⁸) = 18.89
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
V₁ = 0.0005 m³
V₂ = 2.10 dm³ = 0.002 m³
1 - γ = 1 - 1.28 = - 0.28
W =
18.89 [(0.002)⁻⁰•²⁸ - (0.0005)⁻⁰•²⁸]/(-0.28)
W = -67.47 (5.698 - 8.4)
W = 182.3 = 182 to 3 s.f
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm