Answer:
t_o = 3, so solution exists on (0,4).
Step-by-step explanation:
Use Theorem
Divide equation with t(t — 4).
y''+[3/(t-4)]*y'+ [4/t(t-4)]*y=2/t(t-4)
p(t)=3/t-4—> continuous on (-∞, 4) and (4,∞)
q(t) = 4/t(t-4) —> continuous on (-∞,0), (0,4) and (4, ∞)
g(t) = 2/t(t-4)—> continuous on (-∞, 0), (0,4) and (4,∞)
t_o = 3, so solution exists on (0,4).