Oxygen, sulfur, nitrogen, and hydrogen!
Because you wouldn’t want to harm others and they would want to know what there putting
Oxygen and carbon dioxide travels to and from tiny air sacs in the lungs, through the walls of the capillaries, into the blood. Blood leaves the heart through the pulmonic valve, into the pulmonary artery and to the lungs.
It is an advantage because they approach their environments from all sides equally.
Answer:
X is negative heterotropic modulator
Explanation:
In allosteric regulations, modulators are molecules that causes a change in the conformation of an enzyme, hence, resulting a change in enzyme activity. It can lead to a decrease or an increase of the enzyme. When a molecule decreases the enzyme activity it called a negative modulator, when it increases or activates the enzyme activity, it is called a positive modulator.
A positive or negative modulator can either be homotrophic (substrate acts as modulator) or heterotropic (another ligand acts as modulator).
In the example above, X is negative heterotropic modulator, because the modulator is different from the substrate and it also decreases the enzyme activity.