Explanation:
1.
Given parameters:
Frequency of the radiation = 8.4 x 10¹⁴Hz
Unknown:
Energy of the wave = ?
Solution:
The energy of a wave is given by the expression below;
E = hf
E is the energy
h is the Planck's constant = 6.63 x 10⁻³⁴m²kg/s
f is the frequency
Now insert the parameters and solve;
E = 6.63 x 10⁻³⁴m²kg/s x 8.4 x 10¹⁴Hz
E = 5.57 x 10¹ x 10⁻²⁰J
E = 5.57 x 10⁻¹⁹J
2.
Given parameters:
Wavelength = 2.13 x 10⁻¹³m
Unknown:
Frequency of the wave = ?
Solution:
The frequency of a wave can be determined using the expression;
C = f∧
C is the speed of light = 3 x 10⁸m/s
f is the frequency
∧ is the wavelength
f = = = 1.41 x 10²¹hz
The best substance to heat up the fastest would be blue fire
Answer:
Curbing global carbon dioxide emissions has been a challenge, primarily because they are being driven higher by countries with low per capita emissions.
Explanation:
"just trust me bro"
Answer:
2
b= they are grouped differently, but all the atoms are still there.
According to the question, the determined melting point of the compound is 112.5-113.0oC. When the solidified compound was retried, the melting point was found to be 133.6-154.5oC. This greater range higher than 112°C is caused by reusing samples leads to errors.
A pure sample is known by its sharp melting point. A pure sample does not melt over a large range. We can see this in the predetermined melting points of the pure sample(112.5-113.0oC).
However, reusing a sample introduces errors because the pure sample may become contaminated leading to a larger and higher range of melting point (133.6-154.5oC) which is far above 112°C.
Learn more: brainly.com/question/5325004