Answer:
Explanation:
A neutral titanium atom will have 22 electrons. Therefore, its electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d2.
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g
Answer:
The key feature of an amine is a nitrogen atom bonded to a carbonyl carbon atom. Like esters, amides are formed in a condensation reaction. ... These polymers are formed from another organic nitrogen compound, the amino acid. These molecules contain both an amine group and a carboxyl group.
Keeping Our Promise Every Day. We work for you. We provide electric service to 1.8 million customers and natural gas service to 1.7 million customers in Michigan's Lower Peninsula. ... We buy 100% of the natural gas we need and use our unique storage fields to buy and store natural gas when prices are lowest.
Answer:
% weight of nickle = 24 %
Explanation:
molar mass of Nickel Sulfamate (Ni(SO₃NH₂)₂) = 250.87 g/mol
Solution
1st we write down the molar mass of Ni
molar mass of Ni = 59 g/mol
now we write down the number of moles of Ni in (Ni(SO₃NH₂)₂)
number of moles of Ni = 1 mol
Now we calculate the mass of nickle present in (Ni(SO₃NH₂)₂)
<em> mass = moles × molar mass</em>
mass = 1 mol × 59 g/mol
mass = 59 g
now we calculate the % weight of nickle in (Ni(SO₃NH₂)₂)
<em> % weight = (weight of element ÷ total weight) × 100</em>
% weight of nickle = (59 ÷ 250.87) × 100
% weight of nickle = 0.24 × 100
% weight of nickle = 24 %