Answer:
Don't post any question if isn't related to the topic or to your homework or assignment.
Explanation:
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Answer:
like how do you need help
Answer is: H₂O → H⁺ + OH⁻.
Water dissociates (autoionization) to form hydrogen ions (H⁺) and hydroxide (OH⁻) ions. The protons (H⁺) hydrate as hydroxonium ions( H₃O⁺).
The Kw (the ionic product for water) at 25°C is 1·10⁻¹⁴ mol²/dm⁶ or 1·10⁻¹⁴ M². Concentration of hydrogen ions and hydroxide ions in pure water are the same.