Answer: q²x² - p³x + 3pqx + q = 0
<u>Step-by-step explanation:</u>
Since a and B are the roots of x² - px + q = 0, then x = a and x = B
⇒ (x - a)(x - B) = 0
⇒ x² - ax - Bx + aB = 0
⇒ x² - (a + B)x + aB = 0
Comparing this to the given equation of x² - px + q = 0, we discover that
Next, given the roots for the new equation as
⇒
⇒ (B²x - a)(a²x - B) = 0
⇒ a²B²x² - a³x - B³x + aB = 0
⇒ a²B²x² - (a³ + B³)x + aB = 0
Let's look at each term individually:
1st term: a²B²x² = (aB)²x² = q²x² <em>(since q = aB)</em>
2nd term: (a³ + B³)x <em>cubic formula can be used</em>
<em> </em> = [(a + B)(a² - aB + B²)]x
= [(a + B)(a² + (2aB - 3aB) + B²)]x
= [(a + B)(<u>a² + 2aB + B²</u> - 3aB)]x
= [(a + B)(a + B)² - 3aB)]x
= [( p )( p² - 3 q )]x <em>since p = a + B and q = aB</em>
<em> </em>= (p³ - 3pq)x <em>distributed "p" into p² - 3q</em>
= p³x - 3pqx <em>distributed "x" into p³ - 3pq</em>
3rd term: aB = q <em> since q = aB </em>
Put it all together:
q²x² - (p³x - 3pqx) + q = 0
⇒ q²x² - p³x + 3pqx + q = 0