Answer:
a = length of the base = 2.172 m
b = width of the base = 1.357 m
c = height = 4.072 m
Step-by-step explanation:
Suppose we want to build a rectangular storage container with open top whose volume is 12 cubic meters. Assume that the cost of materials for the base is 12 dollars per square meter, and the cost of materials for the sides is 8 dollars per square meter. The height of the box is three times the width of the base. What’s the least amount of money we can spend to build such a container?
lets call a = length of the base
b = width of the base
c = height
V = a.b.c = 12
Area without the top:
Area = ab + 2bc + 2ac
Cost = 12ab + 8.2bc + 8.2ac
Cost = 12ab + 16bc + 16ac
height = 3.width
c = 3b
Cost = 12ab + 16b.3b + 16a.3b = 12ab + 48b² + 48ab = 48b² + 60ab
abc = 12 → ab.3b = 12 → 3ab² = 12 → ab² = 4 → a = 4/b²
Cost = 48b² + 60ab = 48b² + 60b.4/b² = 48b² + 240/b
C(b) = 48b² + 240/b
C'(b) = 96b - 240/b²
Minimum cost: C'(b) = 0
96b - 240/b² = 0
(96b³ - 240)/b² = 0
96b³ - 240 = 0
96b³ = 240
b³ = 240/96
b³ = 2.5
b = 1.357m
c = 3b = 3*1.357 = 4.072m
a = 4/b² = 2.172m
Ok, I'm going to start off saying there is probably an easier way of doing this that's right in front of my face, but I can't see it so I'm going to use Heron's formula, which is A=√[s(s-a)(s-b)(s-c)] where A is the area, s is the semiperimeter (half of the perimeter), and a, b, and c are the side lengths.
Substitute the known values into the formula:
x√10=√{[(x+x+1+2x-1)/2][({x+x+1+2x-1}/2)-x][({x+x+1+2x-1}/2)-(x+1)][({x+x+1+2x-1}/2)-(2x-1)]}
Simplify:
<span>x√10=√{[4x/2][(4x/2)-x][(4x/2)-(x+1)][(4x/2)-(2x-1)]}</span>
<span>x√10=√[2x(2x-x)(2x-x-1)(2x-2x+1)]</span>
<span>x√10=√[2x(x)(x-1)(1)]</span>
<span>x√10=√[2x²(x-1)]</span>
<span>x√10=√(2x³-2x²)</span>
<span>10x²=2x³-2x²</span>
<span>2x³-12x²=0</span>
<span>2x²(x-6)=0</span>
<span>2x²=0 or x-6=0</span>
<span>x=0 or x=6</span>
<span>Therefore, x=6 (you can't have a length of 0).</span>
im pretty sure it's the first option.