Answer: The length of the shadow on the wall is decreasing by 0.6m/s
Explanation:
the specified moment in the problem, the man is standing at point D with his head at point E.
At that moment, his shadow on the wall is y=BC.
The two right triangles ΔABC and ΔADE are similar triangles. As such, their corresponding sides have equal ratios:
ADAB=DEBC
8/12=2/y,∴y=3 meters
If we consider the distance of the man from the building as x then the distance from the spotlight to the man is 12−x.
(12−x) /12=2/y
1− (1 /12x )=2 × 1/y
Let's take derivatives of both sides:
−1 / 12dx = −2 × 1 / y^2 dy
Let's divide both sides by dt:
−1/12⋅dx/dt=−2/y^2⋅dy/dt
At the specified moment:
dxdt=1.6 m/s
y=3
Let's plug them in:
−1/121.6) = - 2/9 × dy/dt
dy/dt = 1.6/12 ÷ 2/9
dy/dt = 1.6/12 × 9/2
dy/dt = 14.4/24 = 0.6m/s
Answer:
a. 9.8 m/s2.
Explanation:
The acceleration depends on the force of gravity. It's independent of the velocity of the ball.
Answer:
Higher, Windward side, Condenses
Explanation:
The Windward side refers to that side of a mountain that faces the direction from which the wind is blowing. In this direction, the moisture containing hot air blowing from a distant place moves upward and strikes the mountain at a greater height, where the air mass is thin and the temperature is relatively cold. As the temperature and pressure decrease with altitude, the hot uprising air cools and gradually condenses. This results in the occurrence of high precipitation over this region i.e. the windward side of the mountain.
Therefore, the precipitation is always higher on the windward side of a mountain as the hot air undergoes condensation at greater height as it rises upward.
Answer:
B. The bonds between the oxygen and hydrogen atoms
Explanation:
The bonds that formed in this reaction is one between the oxygen and hydrogen atoms.
This bond is called a covalent bond.
- It develops by sharing of valence electrons between the two species.
- The oxygen and hydrogen attains their own stability this way.
- There is no bond between any wo hydrogen atoms in the diagram.
- An oxygen atom combines with two hydrogen atoms.
Answer:
Is fire matter? Matter is anything that has mass and occupies space. The flame itself is a mixture of gases (vaporized fuel, oxygen, carbon dioxide, carbon monoxide, water vapor, and many other things) and so is matter. The light produced by the flame is energy, not matter.