Answer: has properties similar to other elements in group 18, does not react readily with other elements, is part of the noble gas group
Explanation: I’ve done on edg before
Explanation:
Boiling is defined as a process in which vapor pressure of a liquid substance becomes equal to the atmospheric pressure.
During this change liquid and vapors remain in equilibrium and the equation for this change is as follows.
Therefore, when boiling takes place then average kinetic energy of particles in liquid phase equals to the average kinetic energy of particles in vapor phase.
Hence, we can increase the kinetic energy of particles in liquid phase by increasing the temperature because kinetic energy is directly proportional to temperature as follows.
K.E =
Answer: Hmmmmm that's crazy....
There are a couple of equations one could use for this type of problem, but I find the following to be the easiest to use and to understand.
Fraction remaining (FR) = 0.5n
n = number of half lives that have elapsed
In this problem, we need to find n and are given the FR, which is 1.56% or 0.0156 (as a fraction).
0.0156 = 0.5n
log 0.0156 = n log 0.5
-1.81 = -0.301 n
n = 6.0 half lives have elapsed
Explanation:
Just wanted to help. Hopefully it's correct wouldn't want to waster your time ;)
Answer:
1. K<10−3
Explanation:
Equilibrium Constant is an expression which involves the concentration of the product divided by the concentration of the reactant molecules.
However the concentration of the pure liquid and pure solid is regarded as 1.
Equilibrium expression for the equation 2H2(g)+O2(g)⇌2H2O(g)
Equilibrium Constant = [H2O]^2/[H2]^2 x [O2]
Since H2O is a pure liquid, its concentration = 1
There fore;
Equilibrium Constant = 1/[H2]^2 x [O2]
This shows that the Equilibrium Constant of the equation will be less than 1 and greater than 0.
probably none becuase it going staright unless its going down a hill