Answer:
For 0,90 of Confidence we reject H₀
For 0,95 CI we reject H₀
Step-by-step explanation:
To evaluate a difference between two proportion with big sample sizes we proceed as follows
1.-Proportion 1
n = 2160
243 had rear license p₁ = 243/2160 p₁ = 0,1125
2.Proportion 2
n = 358
55 had rear license p₂ = 55/ 358 p₂ = 0,1536
Test Hypothesis
Null Hypothesis H₀ ⇒ p₂ = p₁
Alternative Hypothesis Hₐ ⇒ p₂ > p₁
With signficance level of 0,05 means z(c) = 1,64
T calculate z(s)
z(s) = ( p₂ - p₁ ) / √ p*q ( 1/n₁ + 1/n₂ )
p = ( x₁ + x₂ ) / n₁ + n₂
p = 243 + 55 / 2160 + 358
p = 0,1183 and then q = 1 - p q = 0,8817
z(s) = ( 0,1536 - 0,1125 ) / √ 0,1043 ( 1/ 2160 + 1 / 358)
z(s) = 0,0411 /√ 0,1043*0,003256
z(s) = 0,0411 / 0,01843
z(s) = 2,23
Then z(s) > z(c) 2,23 > 1,64
z(s) is in the rejection region we reject H₀
If we construct a CI for 0,95 α = 0,05 α/2 = 0,025
z (score ) is from z- table z = 1,96
CI = ( p ± z(0,025*SE)
CI = ( 0,1536 ± 1,96*√ 0,1043*0,003256 )
CI = ( 0,1536 ± 1.96*0,01843)
CI = ( 0,1536 ± 0,03612 )
CI = ( 0,11748 ; 0,18972 )
In the new CI we don´t find 0 value so we have enough evidence to reject H₀