9514 1404 393
Answer:
1. (f+g)(x) = 2x^2 +4x +2
2. (f -g)(x) = -2x^2 +4x -4
5. (f+g)(x) = x^2 +2x -1
6. (g -f)(x) = x^2 -2x -1
Step-by-step explanation:
None of these are compositions. They are only sums or differences.
(f±g)(x) = f(x) ± g(x)
__
1. (f+g)(x) = f(x) +g(x) = (4x -1) +(2x^2 +3)
(f+g)(x) = 2x^2 +4x +2
__
2. (f -g)(x) = f(x) -g(x) = (4x -1) -(2x^2 +3)
(f -g)(x) = -2x^2 +4x -4
__
5. (f +g)(x) = f(x) +g(x) = (2x) +(x^2 -1)
(f+g)(x) = x^2 +2x -1
__
6. (g -f)(x) = g(x) -f(x) = (x^2 -1) -(2x)
(g -f)(x) = x^2 -2x -1
Answer:
42
Step-by-step explanation:
6 to the second power is 36+6 is 42.