Answer:
-17
Step-by-step explanation:
8x -2y= 12
<em>Divide</em><em> </em><em>the</em><em> </em><em>whole</em><em> </em><em>equation</em><em> </em><em>by</em><em> </em><em>2</em><em>:</em>
4x -y= 6
<em>Rewrite the equation into the slope-intercept form (y=mx+c, where m is the gradient while c is the y-intercept).</em>
-y= -4x +6
y= 4x -6
Thus, gradient of given line= 4.
Since parallel lines have the same gradient, gradient of line= 4.
y= 4x +c
<em>To find the y-intercept of the lone, substitute a pair of coordinates.</em>
When x=5, y=3,
3= 4(5) +c
3= 20 +c
c= 3 -20
c= -17
Thus, the y-intercept of the line is -17.
18/20=0.9
Move decimal two spaces to the right and include percent sign
90%
Answer:
f (3) is equal to 31
Step-by-step explanation:
f (3) means that x is equal to 3 [hence f (x) ---> f (3)]
Plugin 3 into all the x values to solve:
4(3)^2 - 2(3) + 1
4(9) - 6 + 1
36 - 6 + 1
30 + 1
31
f (3) is equal to 31
Answer:
the difinition of addition is adding two things together
Step-by-step explanation:
Answer:
y=t−1+ce
−t
where t=tanx.
Given, cos
2
x
dx
dy
+y=tanx
⇒
dx
dy
+ysec
2
x=tanxsec
2
x ....(1)
Here P=sec
2
x⇒∫PdP=∫sec
2
xdx=tanx
∴I.F.=e
tanx
Multiplying (1) by I.F. we get
e
tanx
dx
dy
+e
tanx
ysec
2
x=e
tanx
tanxsec
2
x
Integrating both sides, we get
ye
tanx
=∫e
tanx
.tanxsec
2
xdx
Put tanx=t⇒sec
2
xdx=dt
∴ye
t
=∫te
t
dt=e
t
(t−1)+c
⇒y=t−1+ce
−t
where t=tanx