Answer:
a = 2
b = 18
a/b = 1/9
Step-by-step explanation:
Answer:
<em><u>Given </u></em><em><u>-</u></em>
- <em><u>radius </u></em><em><u>of </u></em><em><u>cylinder </u></em><em><u>=</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>ft</u></em>
- <em><u>height </u></em><em><u>of </u></em><em><u>cylinder </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em><em><u> </u></em><em><u>ft</u></em>
Now ,
hope helpful~
Answer:No
Step-by-step explanation:
Answer:
Simplifying
4u = 10.24
Solving
4u = 10.24
Solving for variable 'u'.
Move all terms containing u to the left, all other terms to the right.
Divide each side by '4'.
u = 2.56
Simplifying
u = 2.56
Step-by-step explanation:
Answer:
Altitude of the plane is 0.5 miles.
Step-by-step explanation:
From the figure attached,
An airplane A is at height h miles observes a small airstrip at D and a factory at F, 4.8 miles apart from D.
Angle of depressions for the airstrip is 13.1° and the factory is 4.1°.
We have to calculate the airplane's altitude h.
From ΔABF,
tan4.1 =
h = 0.07168(x + 4.8) -----(1)
From ΔABD,
tan13.1 =
h = 0.2327x -----(2)
From equation (1) and (2),
0.07168(x + 4.8) = 0.2327x
0.2327x - 0.07168x = 4.8×0.07168
0.161x = 0.344
x = miles
From equation (2),
h = 0.2327×2.137
h = 0.4972 miles
h ≈ 0.5 miles
Therefore, 0.5 miles is the altitude of the plane.