the reaction is
2NO(g) + 2H2(g) <—> N2(g) + 2H2O (g)
Kc = [N2] [ H2O]^2 / [NO]^2 [ H2]^2
Given
moles of NO = 0.124 therefore [NO] = moles /volume = 0.124 /2 = 0.062
moles of H2 = 0.0240 , therefore [H2] = moles / volume = 0.0240 / 2 = 0.012
moles of N2 = 0.0380 , therefore [N2] = moles / volume = 0.0380 / 2 = 0.019
moles of H2O = 0.0276 , therefore [H2O] = moles / volume = 0.0276 / 2 = 0.0138
Kc = (0.019) ( 0.0138)^2 / (0.062)^2 ( 0.012)^2 = 6.54
Answer:
8.5 mol H₂SO₄
Explanation:
It seems the balanced reaction the problem is referring to is absent, however the description matches the following balanced reaction:
- 2SO₂ + O₂ + 2H₂O → 2H₂SO₄
Now we <u>can convert 8.5 moles of SO₂ into moles of H₂SO₄</u>, using <em>the stoichiometric coefficients of the balanced reaction</em>:
- 8.5 mol SO₂ * = 8.5 mol H₂SO₄
Answer: Molecules of gas are usually far apart and can be compressed unlike molecules of liquids.
Explanation:
The molecules of gases are usually far apart, moving freely and randomly, occupying extra space in the containing vessel. Hence, when compressed to become closely packed, gases have lower volume.
However, unlike gases, the molecules of a liquid are restricted, move less freely and occupy no extra space. Hence, liquids cannot be compressed, and their volume remains the same in their containing vessel.
Answer:- 13.6 L
Solution:- Volume of hydrogen gas at 58.7 Kpa is given as 23.5 L. It asks to calculate the volume of hydrogen gas at STP that is standard temperature and pressure. Since the problem does not talk about the original temperature so we would assume the constant temperature. So, it is Boyle's law.
Standard pressure is 1 atm that is 101.325 Kpa.
Boyle's law equation is:
From given information:-
= 58.7 Kpa
= 23.5 L
= 101.325 Kpa
= ?
Let's plug in the values and solve it for final volume.
On rearranging the equation for
= 13.6 L
So, the volume of hydrogen gas at STP for the given information is 13.6 L.
Answer:
single replacement reaction
Explanation:
the iron molecules would rather react with Bromine instead of Iodine. So, the iron molecules switch over to bromine leaving the iodine molecules by themselves.