Answer:
The velocity of the light will be 1.0c only
Explanation:
The velocity of the light measured in the case given in question will be 1.0c only.
This is due to the fact that the velocity of light is never relative. The velocity of the light is maximum
The velocity of the light cannot be scaled down in no case
Thus, the velocity of the light remains as constant.
Hence, the velocity of the light measured will be 1.0c although the ships have relative velocity.
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by
where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m
T = 20.0 N
Substituting into the equation, we find the fundamental frequency:
The next frequencies (harmonics) are given by
with n being an integer number and f being the fundamental frequency.
So we get:
The acceleration due to gravity of Mars is
<u>Explanation:</u>
As per universal law of gravity, the gravitational force is directly proportional to the product of masses and inversely proportional to the square of the distance between them. But in the present case, the gravity need to be determined between Mars and the object on Mars. Since the mass of Mars is greater than the mass of any object. Thus,
Here, G is the gravitational constant, R is the radius of Mars and M, m is the mass of Mars and the object respectively..
Also, according to Newton’s second law of motion, the acceleration of any object will be equal to the ratio of force exerted on it to the mass of the object.
So in order to determine the acceleration due to gravity of Mars, divide the gravitational force of Mars by mass of object on the surface of Mars.