So lets get to the problem
<span>165°= 135° +30° </span>
<span>To make it easier I'm going to write the same thing like this </span>
<span>165°= 90° + 45°+30° </span>
<span>Sin165° </span>
<span>= Sin ( 90° + 45°+30° ) </span>
<span>= Cos( 45°+30° )..... (∵ Sin(90 + θ)=cosθ </span>
<span>= Cos45°Cos30° - Sin45°Sin30° </span>
<span>Cos165° </span>
<span>= Cos ( 90° + 45°+30° ) </span>
<span>= -Sin( 45°+30° )..... (∵Cos(90 + θ)=-Sinθ </span>
<span>= Sin45°Cos30° + Cos45°Sin30° </span>
<span>Tan165° </span>
<span>= Tan ( 90° + 45°+30° ) </span>
<span>= -Cot( 45°+30° )..... (∵Cot(90 + θ)=-Tanθ </span>
<span>= -1/tan(45°+30°) </span>
<span>= -[1-tan45°.Tan30°]/[tan45°+Tan30°] </span>
<span>Substitute the above values with the following... These should be memorized </span>
<span>Sin 30° = 1/2 </span>
<span>Cos 30° =[Sqrt(3)]/2 </span>
<span>Tan 30° = 1/[Sqrt(3)] </span>
<span>Sin45°=Cos45°=1/[Sqrt(2)] </span>
<span>Tan 45° = 1</span>
2.9% OF the 500 phones are more than likely defective. In order to figure this out you must do 500*0.029 which would equal 14.5 and rounds off to 15. 15 out of the 500 phones will maybe be defective.
Answer:
Step-by-step explanation:
Convert equation to standard form