Answer: 91. I find the easiest method for questions like this about ratios is to multiply the side of the ratio you are given a value for, in this case the right hand side (children), by a number so it equals the value given. This was 2x13 to equal 26. Then, to find the value of the other side, the adults, you must multiply the left hand side by the same number used on the right hand side. 7x13 equals 91.
Answer:
4.99
Step-by-step explanation:
i cant remember how i got 4.99 but can show u how to check
= 55 +<u> 4.99 </u>= 59.99
59.99 divide <u>3</u> = 19.99666667
= 19.99666667 divide 4 (working in reverse as it says 4 times the orig no.)
= 4.99 (was rounded)
Let x be the mass of the paperbacks and y be the mass of the textbook.
20x + 9y = 44.4 ----------- (1)
25x + 10y = 51 -------------(2)
(1) x 10:
200x + 90y = 444 --------(1a)
(2) x 9:
225x + 90y = 459 --------(2a)
(2a) - (1a):
25x = 15
x = 0.6 -------- sub into (1)
20 (0.6) + 9y = 44.4
12 + 9y = 44.4
9y = 44.4 - 12
9y = 32.4
y = 3.6
So the paperback's mass is 0.6 pounds and textbook is 3.6 pounds
Answer:
5006 is and 4896
Step-by-step explanation:
math is the best letsgoooo
Answer:
- Solution of equation ( q ) = <u>1</u><u>6</u>
Step-by-step explanation:
In this question we have given an equation that is <u>3 </u><u>(</u><u> </u><u>q </u><u>-</u><u> </u><u>7</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>2</u><u>7</u><u> </u>and we have asked to solve this equation that means to find the value of <u> </u><u>q</u><u> </u><u>.</u>
<u>Solution : -</u>
<u>Step </u><u>1</u><u> </u><u>:</u> Solving parenthesis :
<u>Step </u><u>2</u><u> </u><u>:</u> Adding 21 on both sides :
On further calculations we get :
<u>Step </u><u>3 </u><u>:</u> Dividing by 3 from both sides :
On further calculations we get :
- <u>Therefore</u><u>,</u><u> </u><u>solution</u><u> </u><u>of </u><u>equation</u><u> </u><u>(</u><u> </u><u>q </u><u>)</u><u> </u><u>is </u><u>1</u><u>6</u><u> </u><u>.</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
Now we are very our answer by substituting value of q in the given equation . So ,
<u>Therefore</u><u>,</u><u> </u><u>our </u><u>solution</u><u> </u><u>is </u><u>correct</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>