Heat capacity of body 1 :
Heat capacity of body 2 :
it's given that, the the head capacities of both the objects are equal. I.e
Now, consider specific heat of composite body be s'
According to given relation :
[ since, ]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Answer: The volume of gas expands because of the decrease in pressure as he tries to exit the water body, therefore he must take necessary precaution.
Explanation:
Using Boyle's law which states that the the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature
ie P1VI=P2V2
A diver absorbs compressed nitrogen gas when he dives into the water body, As he ascends out of the water body having less pressure, the volume of nitrogen gas which he absorbs will tend to expand following Boyle's Law. Therefore a scuba driver should not rises quickly but slowly to the surface or else the expanding nitrogen gas can cause tiny bubbles in his blood and tissue to form together with joints pains and eventually cause decompression sickness needing medical attention.
Answer:
a = 1.5*10^-3 m/s^2
x = 0.033m = 3.3cm
Explanation:
To calculate the acceleration and the distance traveled by the car you use the following formulas:
(1)
(2)
v: final velocity = 0,255 km/h
vo: initial velocity = 0 m/s
t: time = 3/4 min
a: acceleration = ?
x: distance
In order to use the equations (1) and (2) you first convert the units of the final velocity to m/s, and the time to seconds.
Next, you solve the equation (1) for the acceleration a:
With this value of a you can calculate the distance traveled by the car, by using the equation (2):
hence, the acceleration of the car is 1.5*10^-3 m/s^2 and the distance traveled in 3/4 min is 0.033m
Answer:
True
Explanation:
This can be explained by the special theory of relativity for length contraction.
Length contraction is observed in the direction of motion of an object when an object moves with speed closer to the speed of light.
The length of the rocket in this case, appears shorter to the observer on earth in the stationary reference frame which is improper frame whereas the traveler in the rocket is in the same inertial frame which is proper for the rocket's size measurement.