100
ggbnjj mj ddcnmikiyewazxbnoorr
Answer:
0.30
Step-by-step explanation:
Probability of stopping at first signal = 0.36 ;
P(stop 1) = P(x) = 0.36
Probability of stopping at second signal = 0.54;
P(stop 2) = P(y) = 0.54
Probability of stopping at atleast one of the two signals:
P(x U y) = 0.6
Stopping at both signals :
P(xny) = p(x) + p(y) - p(xUy)
P(xny) = 0.36 + 0.54 - 0.6
P(xny) = 0.3
Stopping at x but not y
P(x n y') = P(x) - P(xny) = 0.36 - 0.3 = 0.06
Stopping at y but not x
P(y n x') = P(y) - P(xny) = 0.54 - 0.3 = 0.24
Probability of stopping at exactly 1 signal :
P(x n y') or P(y n x') = 0.06 + 0.24 = 0.30
Answer:
Yes it is a function
Step-by-step explanation:
We have to check the ordered pairs to find out if given relation is a function or not.
In an ordered pair, the first element represents the input and the second element represents the output.
The set of inputs is domain and output is range.
For a relation to be function, there should be no repetition in domain i.e there should be unique pairs of input and output.
In the given relation, the domain is {3,5,-1,-2}.
No element is repeated hence it is a function ..
Substitute a number for each variable
Ex.
2x x=5
(2)(5)
=10