Well, when an atom attains a stable valence electron, it means that the outer electrons are complete and so cannot attain any more electrons. For the first shell, it is complete when it has 2 electrons, the second shell is complete when it has 8 electrons, all the other shells also have a particular number when complete. Anyway, i believe the answer is HYDROGEN because when HYDROGEN combines with another atom of HYDROGEN, the outer shell is completed. This is because HYDROGEN has only 1 electron. If the two HYDROGENS, which both have 1 electron combine, they make the electrons 2, which is complete for the first shell, HYDROGEN ends in the first shell. Since the electrons become 2, the shell is at stable valence. In all the other options, this happens;
NEON- It has 10 electrons, 2 in the first shell and 8 in the second. So the the shells are already complete, so it can't bond with any thing, which is completely against the question.
RADON- Radon has 86 electrons.
HELIUM- Helium has 2 electrons, so the shell is already full, and cannot bond, so it goes against the question. The question says BY BONDING.
So the answer is definitely 4) HYDROGEN
Hope i helped. Have a nice day, by the way, i'm very sure it's hydrogen.
Answer:
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
In such a way, the mercury II sulfate (molar mass 296.65g/mol) is in a 1:1 molar ratio with the mercury II chloride (molar mass 271.52g/mol), for that reason the stoichiometry to find mass in grams of mercury II chloride turns out:
Best regards.
Based on recommended amount of carbohydrate, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
<h3>How many ounces of endurance formula gatorade g series, endurance formula should a basketball player consume during an hour-long game if it contains 14 grams of carbohydrate per 8 ounces?</h3>
Carbohydrates are food substances metabolized easily by the body to produce energy.
Given that the recommended amount of carbohydrate to consume to maintain performance is 30–60 g/h.
Also 14 grams of carbohydrate found in 8 ounces of the drink.
30 g of carbohydrate will be present in 30 × 8/14 = 17.1 ounces of gatorade g series
60 g of carbohydrate will be present in 60 × 8/14 =34.3 ounces of gatorade g series.
Therefore, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
Learn more about carbohydrates at: brainly.com/question/797978
Answer:
I think it's B
Explanation:
I dont have much experience with the periodic table, but I just think its B.