What are you asking? And more info needs to be provided.
Answer:
option A
Explanation:
given,
height of the drop of stone = 9.44 m
speed of the stone = ?
As the stone is dropped the energy of the stone will be conserved.
using conservation of energy.
Potential energy = Kinetic energy
v = 13.60 m/s
Hence, the correct answer is option A
The calculated magnitude is 6.73 x 10³ V/m.
AMU is described as being one-twelfth the mass of a carbon-12 atom (12C). C makes up more than 98% of the carbon that can be found in nature, making it the most prevalent isotope. The magnitude of the field is the change in potential across a small distance in the indicated direction divided by that distance.
Potential difference = 8.20 kV= 8.20 x 10³ V
radius= 19.4/100=0.194 m
total distance that is circumference of the circle= 2πr =2 x 3.14 x 0.194
= 1.218 m
therefore Magnitude= 8.20 x 10³ / 1.218
=6.73 x 10³ V/m
Learn more about Magnitude here-
brainly.com/question/15681399
#SPJ9
Answer:
W ≅ 292.97 J
Explanation:
1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)
Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;
W = (Fcosθ)d
Given that:
Tension of the force = 62 N
angle of incline θ = 34°
distance d =5.7 m.
Then;
W = 62 × cos(34) × 5.7
W = 353.4 cos(34)
W = 353.4 × 0.8290
W = 292.9686 J
W ≅ 292.97 J
Hence, the work done by tension before the block goes up the incline = 292.97 J
<h2><u>Question</u><u>:</u><u>-</u></h2>
Ryan applied a force of 10N and moved a book 30 cm in the direction of the force. How much was the work done by Ryan?
<h2><u>Answer:</u><u>-</u></h2>
<h3>Given,</h3>
=> Force applied by Ryan = 10N
=> Distance covered by the book after applying force = 30 cm
<h3>And,</h3>
30 cm = 0.3 m (distance)
<h3>So,</h3>
=> Work done = Force × Distance
=> 10 × 0.3
=> 3 Joules