Answer:
Product: ethyl L-valinate
Explanation:
If we want to understand what it is the molecule produced we have to an<u>alyze the reagents</u>. We have valine an <u>amino acid</u>, in this kind of compounds we have an <em>amine group</em> () and a <em>carboxylic acid</em> group (). Additionally, we have an <u>alcohol </u>() in the presence of HCl (a <u>strong acid</u>) in the first step, and a base ().
When we have an acid and an alcohol in a vessel we will have an <u>esterification reaction</u>. In other words, an ester is produced. As the <em>first step,</em> the oxygen in the C=O (in the carboxylic acid group) would be protonated. In the <em>second step</em>, the ethanol attacks the carbon in the C=O of the carboxylic acid group producing a new bond between the oxygen in the ethanol and the carbon in the carboxylic acid. In <em>step 3</em>, a proton is transferred to produce a better leaving group (). In <em>step 4</em>, a water molecule leaves the main structure to produce again the double bond C=O. <em>Finally</em>, a base () removes the hydrogen from the C=O bond to produce ethyl L-valinate
See figure 1
I hope it helps!
Answer:
the error could have been the fact that the unit for volume wasn't changed from cm³ to dm³
hence the calculation error
the solution to this would be first dividing the volume by 1000 to get that same amount in dm³ which is the standard unit to be used for volume-density calculations
Answer:
H2O
Explanation:
PLS MARK ME TO THE BRAINLIST
Answer:
B. CH3Br
Explanation:
Dipole -Dipole interactions take place in polar molecules.
CH3Br exhibits dipole -dipole forces as its strongest attraction between molecules because it is a polar molecule due to the slightly negative dipole present on the Br molecule.
While O2 is a nonpolar molecule due to its linear structure, CCl4 has zero resultant dipole moment, Helium is non-polar and BrCH2CH2OH is a non polar compound having net dipole moment is zero.
Hence, the correct option is B. CH3Br.