<u>Answer:</u> The temperature of the ideal gas is
<u>Explanation:</u>
To calculate the temperature, we use the equation given by ideal gas equation:
where,
P = Pressure of the gas = 142,868 Pa = 142.868 kPa (Conversion factor: 1 kPa = 1000 Pa)
V = Volume of gas = 1.0000 L
n = number of moles of ideal gas = 0.0625 moles
R = Gas constant =
T = temperature of the gas = ?
Putting values in above equation, we get:
Hence, the temperature of the ideal gas is
Answer:
69.7% is percent yield
Explanation:
Based on the reaction:
3Ca(NO3)2(aq) + 2Na3PO4(aq) → Ca3(PO4)2(s) + 6NaNO3(aq)
2 moles of Na3PO4 react producing 6 moles of NaNO3.
As 24.2 moles of Na3PO4 react, theoretical moles of NaNO3 produced are:
24.2 moles Na3PO4 * (6 moles NaNO3 / 2 moles Na3PO4) =
72.6 moles of NaNO3
As there are produced 50.6 moles of NaNO3, percent yield is:
50.6 moles NaNO3 / 72.6 moles NaNO3 =
<h3>69.7% is percent yield</h3>
Because during combustion reaction, heat energy is released and it's this energy that is converted to work
Answer:
3.01 x 10 to the power of 6
Explanation:
Step 1
To find a, take the number and move a decimal place to the right one position.
Original Number: 3,010,000
New Number: 3.010000
Step 2
Now, to find b, count how many places to the right of the decimal.
Answer:
b. 1.5 atm.
Explanation:
Hello!
In this case, since the undergoing chemical reaction suggests that two moles of A react with one moles of B to produce two moles of C, for the final pressure we can write:
Now, if we introduce the stoichiometry, and the change in the pressure we can write:
Nevertheless, since the reaction goes to completion, all A is consumed and there is a leftover of B, and that consumed A is:
Thus, the final pressure is:
Therefore the answer is b. 1.5 atm.
Best regards!