Silicon is the element having a mass of 28.09 g
<u>Explanation</u>:
- Silicon is the element having an atomic mass of 28.09 g / mol. So 28.09 g of silicon contains 6.023 10^23 atoms. One mole of each element can produce one mole of compound.
- The Atomic weight of an element can be determined by the number of protons and neutrons present in one atom of that element. So atomic weight expressed in grams always contain the same number of atoms( 6.023 10^23).
- Avagadro number is the number of atoms of 1 mole of any gas at standard temperature and pressure. It has been determined that 6.023 10^23 atoms of an element are equal to the average atomic mass of that element.
Boyle's law
I hope this helps
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more:
Answer : The amount of carbon dioxide produced is, 197.12 grams.
Explanation : Given,
Moles of ethanol = 2.24 mole
Molar mass of carbon dioxide = 44 g/mole
The balanced chemical reaction will be,
First we have to calculate the moles carbon dioxide.
From the balanced chemical reaction, we conclude that
As, 1 mole of ethanol react to give 2 moles of carbon dioxide
So, 2.24 mole of ethanol react to give moles of carbon dioxide
Now we have to calculate the mass of carbon dioxide.
Therefore, the amount of carbon dioxide produced is 197.12 grams.
In order to calculate how much heat is needed to raise the temperature you need to use the formula q =mass x specific heat x (final temperature- initial temperature) where q represents heat being absorbed or released. Before you begin you would convert kg to g because the specific heat is measure in g. So you would set up the equation as q = 358 g x .092 x (60-23 degrees Celsius) which would give you 1218.6