Answer:
387
Step-by-step explanation:
Fourteen hours. The equation is 5x+20=90. Solve for X.
Use a calculator to find the cube root of positive or negative numbers. Given a number x<span>, the cube root of </span>x<span> is a number </span>a<span> such that </span><span>a3 = x</span><span>. If </span>x<span> positive </span>a<span> will be positive, if </span>x<span> is negative </span>a<span> will be negative. Cube roots is a specialized form of our common </span>radicals calculator<span>.
</span>Example Cube Roots:<span>The 3rd root of 64, or 64 radical 3, or the cube root of 64 is written as \( \sqrt[3]{64} = 4 \).The 3rd root of -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span><span>
</span>This was not copied from a website or someone else. This was from my last year report.
<span>
f -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span>
Answer:
is the a. Perpendicular lines form 90° angles.
Given
A rectangular park of length 60 m breadth 50 m encloses with volleyball court of length 18 m and breadth 10 m.
To find:
The area of the park excluding the court at the rate of Rs 110 per square meter.
Solution:
Area of a rectangle is:
Area of whole park is:
Area of volleyball court is:
Now, the area of the park excluding the court is:
Therefore, the area of the park excluding the court is 2820 square meter.