Answer: Correct statements are given below:
1) In activity series elements are listed according to their reactivity.
2) Nuclear reaction in which low atomic nuclei fuse to form a heavier nucleus with the release of energy. Nuclear fusion reaction occurs in the sun.
3) C3H8 + 5O2 → 3CO2 + 4H2O is the example of a combustion reaction.
4) 2Fe + O2 → 2FeO is the example of synthesis reaction. In synthesis reaction is a type of reaction in which two reactants combine to form a single product.
Answer:
C₃H₉N
Explanation:
The empirical formula of a compound is the fundamental and basic possible formula that shows the mole ratio of the atoms of each element in a molecule of the compound.
mole ratio of carbon = 60.94/12 = 5.078
mole ratio of hydrogen = 15.36/1 = 15.36
mole ratio of nitrogen = 23.70/14 = 1.693
Now; we will divide by the smallest value
So; carbon = 5.078/1.693 = 2.99 ≅ 3.0
hydrogen = 15.36/1.693 = 9.07 ≅ 9.0
nitrogen = 1.693/1.693 = 1 ≅ 1
Thus, the empirical formula is = C₃H₉N
The elements in Groups 1A(1) and 7A(17) are all quite reactive.
<h3>Major difference between Groups 1A(1) and 7A(17) : </h3>
Group 7's halogens, which are non-metal elements, become less reactive as you move down the group. In contrast to the alkali metals in Group 1 of the periodic table, this trend is the opposite. The most reactive element in Group 7 is fluorine.
Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals.
- Elements of group 1A are known as alkali metals. Elements of this group are lithium, sodium, potassium, rubidium, cesium.
- Reactivity increase down group 1 but decrease up group 7 this is because group 7 elements react by gaining an electron. As one move down the group, the amount of electron shielding increases, meaning that the electron is less attracted to the nucleus.
To know more about Groups 1A(1) and 7A(17) please click here :
brainly.com/question/13063502
#SPJ4