Answer: X = 52,314.12 N
Explanation: Let X be the force the feet of the athlete exerts on the floor.
According to newton's third law of motion the floor gives an upward reaction based on the weight of the athlete and the barbell which is known as the normal reaction ( based on the mass of the athlete and the barbell)
Mass of athlete = 87kg, mass of barbell = 600/ hence total normal reaction from the floor = 87* 61.22/ 9.8 *9.8 = 52,200N.
The athlete lifts the barbell from rest thus making it initial velocity u=0, distance covered = S = 0.65m and the time taken = 1.3s
The acceleration of the barbell is gotten by using the equation of constant acceleration motion
S= ut + 1/2at²
But u = 0
S = 1/2at²
0.65 = 1/2 *a (1.3)²
0.65 = 1.69 * a/2
0.65 * 2 = 1.69 * a
a = 0.65 * 2/ 1.69
a = 0.77m/s²
According to newton's second law of motion
Resultant force = mass * acceleration
And resultant force in this case is
X - 52,200 = (87 + 61.22) * 0.77
X - 52,200 = 148.22 * 0.77
X - 52, 200 = 114.132
X = 114.132 + 52,200
X = 52,314.12 N
Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
Answer:
The correct answer to the question is objects have zero acceleration.
Explanation:
Before answering the question, first we have to understand dynamic equilibrium .
A body moving with uniform velocity is said to be in dynamic equilibrium if the net external forces acting on the body is zero. Hence, the body is under balanced forces.
If the external forces acting on a body is not balanced, then the body will accelerate which will destroy its equilibrium condition. Hence, the necessary and sufficient condition for a body to be in dynamic equilibrium is that the forces are balanced.
When a body is in dynamic equilibrium, the body moves with uniform velocity along a straight line unless and until it is compelled by some external unbalanced forces.
Hence, the rate of change of velocity or acceleration of the body will be zero.
The answer is D have a nice day!
Answer:
c
Explanation:
wavelength shorter means energy is higher
the wavelength
radio waves>microwave>infrared rays>gamma rays