The correct answer is C. Hope it helped!!!!!
Answer:
The answer is 0.75M HCl
Explanation:
To calculate the concentration of 10 ml of HCl that would be required to neutralize 50.0 mL of 0.150 M NaOH, we use the formula:
To calculate the concentration of 10 ml of HCl that would be required to neutralize 50.0 mL of 0.150 M NaOH, we use the formula:
C1V1 = C2V2
C1 = concentration of acid
C2 = concentration of base
V1 = volume of acid
V2 = volume of base
From the information supplied in the question:
concentration of acid (HCl) is the unknown
volume of acid (HCl) = 10ml
concentration of base (NaOH) = 0.15M
volume of base (NaOH) = 50ml
C1 x 10ml = 0.15M x 50ml
C1 x 10 = 7.5
divide both side by 10
C1 = 0.75M
concentration of acid (HCl) is 0.75M
Answer:
4Fe + 3O2 + 6H2O → 4Fe(OH)3
Explanation:
The chemical formula for rust is Fe2O3 and is commonly known as ferric oxide or iron oxide. The final product is a series of chemical reactions simplified below as- The rusting of the iron formula is simply 4Fe + 3O2 + 6H2O → 4Fe(OH)3. The rusting process requires both the elements of oxygen and water.
Answer:
Option 1
Explanation:
Option number 1 is the most compact one which indicates it is a solid
Answer : Option 1) The true statement is each carbon-oxygen bond is somewhere between a single and double bond and the actual structure of format is an average of the two resonance forms.
Explanation : The actual structure of formate is found to be a resonance hybrid of the two resonating forms. The actual structure for formate do not switches back and forth between two resonance forms.
The O atom in the formate molecule with one bond and three lone pairs, in the resonance form left with reference to the attached image, gets changed into O atom with two bonds and two lone pairs.
Again, the O atom with two bonds and two lone pairs on the resonance form left, changed into O atom with one bond and three lone pairs. It concludes that each carbon-oxygen bond is neither a single bond nor a double bond; each carbon-oxygen bond is somewhere between a single and double bond.
Also, it is seen that each oxygen atom does not have neither a double bond nor a single bond 50% of the time.