1. The chemical reaction produced by Carlo's fire is exergonic because energy is "going out". As the reaction proceeds, entropy increases as the energy stored in the dry wood and leaves are used up as fuel to create the fire which produces low quality light and warmth.
2. This reaction is a classic example of an exothermic reaction. Exothermic reactions are characterized with the presence of heat and light in the products. Combustion reactions are always exothermic in nature.
3. Catalyst are substances that are used to speed up reactions by lowering the activation requirement. Catalysts aren't consumed in the reaction and can still be chemically retrieved afterwards. In this situation, the leaves cannot be retrieved after the reaction ends. The leaves speed up the heating of the wood but it does not behave as a catalyst.
Its larger and if u where wondering to positive ions are smaller
The magnitude of the net displacement is 95.3 m
Explanation:
To find the magnitude of the net displacement, we have to resolve each of the two displacements into the horizontal and vertical direction first.
1st displacement is:
at
So its components are
2nd displacement is:
at
So its components are
Therefore, the x- and y-components of the net displacement are:
Therefore, the magnitude of the final displacement is:
Learn more about displacement:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
because of the idea that like charges get repulsion as a force.
Explanation:
because you wrap the ball with foil, the negative charges will leave the foil and go into the ball by induction. This leaves the foil as a positively charged particle since its electrons left it for the ball, making the ball a negatively charged particle. but if you bring the negative charge near the foil, the electrons will transfer from that and go into the foil, making it negatively charged. Now, because the ball and the foil have the same charge, they repel. the foil flies off.
Answer:
Explanation:
<u>Horizontal Launch</u>
When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
vx=v
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:
The horizontal component of the velocity is always the same:
The vertical component at t=5.5 s is: