Answer:
Q = 1461.6 J
Explanation:
Given data:
Mass of ice = 36 g
Initial temperature = -20°C
Final temperature = 0°C
Amount of heat absorbed = ?
Solution:
specific heat capacity of ice is 2.03 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 0°C - (-20°C)
ΔT = 20°C
Q = 36 g ×2.03 j/g.°C×20°C
Q = 1461.6 J
Answer: Option (C) is the correct answer.
Explanation:
Molecules in a liquid have less force of attraction as compared to solids. But liquid molecules have more force of attraction as compared to gases.
Since molecules of a gas are held together by weak Vander waal forces, therefore, they expand to fill the container whereas molecules in a liquid are not expanded in a container like gases because of more force of attraction within molecules of liquids as compared to gases.
Hence, a liquid can take the shape of container in which it is kept.
Thus, we can conclude that out of the given options, a liquid change to take the shape of its container but NOT expand to fill the container itself because the particles of a liquid are held together loosely enough to flow, but not so loose that they expand.
PH = -log([H+])
[H+] = 10^(-pH)
[H+] = 10^(-9)
[H+][OH-] = Kw
Kw = 1.0*10^-14 at 25 degrees celsius.
[OH-] = Kw/[H+] = (1.0*10^-14)/(1*10^-9) = 1.0*10^-5
The concentration of OH- ions is 1.0*10^-5 M.
Answer:
thank you
So much this was very nice.