Answer:
f(x) = 4.35 +3.95·sin(πx/12)
Step-by-step explanation:
For problems of this sort, a sine function is used that is of the form ...
f(x) = A + Bsin(2πx/P)
where A is the average or middle value of the oscillation, B is the one-sided amplitude, P is the period in the same units as x.
It is rare that a tide function has a period (P) of 24 hours, but we'll use that value since the problem statement requires it. The value of A is the middle value of the oscillation, 4.35 ft in this problem. The value of B is the amplitude, given as 8.3 ft -4.35 ft = 3.95 ft. Putting these values into the form gives ...
f(x) = 4.35 + 3.95·sin(2πx/24)
The argument of the sine function can be simplified to πx/12, as in the Answer, above.