The weight of the car in the picture of the computer screen is 9,800 Newton's.
Start a bedtime routine.
Sorry if this is not the answer your looking for
When you know both the speed and direction of an object’s motion, you know the velocity of an object. speed in a given direction is called velocity
hope this helps :)
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
<h2>distance = 523 cm</h2>
Explanation:
( a ) The rotational speed of the ladybug = 25 r.p.m = 25/60 r.p.s
= 5/12 rev/sec
( b ) The definition of frequency is the number of rotations per second .
Here the number of rotations per second is 5/12 . Thus frequency = 5/12 Hz
( c ) The tangential speed is v = angular velocity x radius of rotation
The angular velocity ω = 2π x n , where n is the number of rotations per second
Thus angular velocity = 2π x 5/12 = 5π/6 rad/sec
The linear velocity = angular velocity x distance from center of record
Thus tangential speed = 5π/6 x 10 = 25π/3 cm/sec
Angular displacement in 20 sec = ω x t = 5π/6 x 20 = 50π/3 rad
Linear displacement = angular displacement x distance from center of record
= 50π/3 x 10 = 500π/3 = 523 cm