Answer:
I. Increasing pressure will allow more frequent successful collision between particles due to the particles being closer together.
II. Rate of reaction increases due to more products being made; as increased pressure favours the exothermic side of the equilibrium.
III. Increasing temperature provides particles lots of (Kinetic) energy, for more frequent successful collision due to the particles moving at a faster rate than before. However, favouring the endothermic side of the equilibrium due to lots of energy required to break and form new bonds.
IV. Rate of reaction increases due to increase temperature favouring both directions of the equilibrium - causing products to form faster.
Hope this helps!
Answer:
T° freezing solution → -11.3°C
T° boiling solution → 103.1 °C
Explanation:
Assuming 100 % dissociation, we must find the i, Van't Hoff factor which means "the ions that are dissolved in solution"
This salt dissociates as this:
SnCl₄ (aq) → 1Sn⁴⁺ (aq) + 4Cl⁻ (aq) (so i =5)
The formula for the colligative property of freezing point depression and boiling point elevation are:
ΔT = Kf . m . i
where ΔT = T° freezing pure solvent - T° freezing solution
ΔT = Kb . m . i
where ΔT = T° boiling solution - T° boiling pure solvent
Freezing point depression:
0° - T° freezing solution = 1.86°C/m . 1.22 m . 5
T° freezing solution = - (1.86°C/m . 1.22 m . 5) → -11.3°C
Boiling point elevation:
T° boiling solution - 100°C = 0.512 °C/m . 1.22 m . 5
T° boiling solution = (0.512 °C/m . 1.22 m . 5) + 100°C → 103.1 °C