Strontium atom loses 2 electrons to become an ion with 2 electrons lesser than its atom. Your answer is C.
Answer:
CH₅N
Explanation:
In the combustion, all of the C in the compound was used to produce CO₂ in a 1:1 ratio. Thus, the moles of CO₂ (MW 44.01 g/mol) produced equals the moles of C in the compound:
(44.0 g)(mol/44.01g) = 0.99977 mol CO₂ = 0.99977... mol C
Similarly, all of the H in the compound was used to produce H₂O in a ratio of 2H:1H₂O. The moles of H₂O (MW 18.02 g/mol) produced was:
(45.0 g)(mol/18.02g) = 2.497...mol H₂O
Moles of H is found using the molar ratio of 2H:1H₂O:
(2.497...mol H₂O)(2H/1H₂O) = 4.994...mol H
The ratio of H to C in the compound is:
(4.994...mol H)/(0.99977... mol C) = 5 H:C
Some NO₂ was produced from the N in the compound. Assuming a 1:1 ratio of C:N, the simplest empirical formula is: CH₅N.
Answer: 9.18 Litres
Standard Temperature and Pressure (STP). Think of this as the perfect environment where the Temp. is 0°C or 273 Kelvin and Pressure is always 1 atm. This is only true in STP.
This question uses the Ideal Gas Equation:
PV=nRT
P= 1 atm
V = ??
T = 273 K (always convert to Kelvin unless told otherwise)
n = 0.410 mol
R = 0.0821 L.atm/mol.K
What R constant to use depends on the units of the other values. (look at the attachments) The units cancel out and only Litres is left. You simply multiply the values.
A. increases
As the temperature increases, the average kinetic energy of the particles in an object will increase. If the temperature of an object doesn't change, the thermal energy will increase as the mass of the object increases.
hope this helps <3