When light moves from a medium with higher refractive index to a medium with lower refractive index, the critical angle is the angle above which there is no refracted ray, and it is given by:
(2)
where
is the refractive index of the second medium and
is the refractive index of the first medium.
We can find the ratio
by using Snell's law:
(1)
where
is the angle of incidence
is the angle of refraction
By using the data of the problem and re-arranging (1), we find
and if we use eq.(2) we can now find the value of the critical angle:
According to Coulomb's Law , The size of the force varies inversely as the square of the distance between the two charges. So ,if the distance between the two charges is doubled, the electrostatic force will become weak by one fourth of the original force.
Answer:
Explanation:
Speed = distance / time
Velocity = displacement / time
So ,
Speed = 50 km / 0.5 hr = 100 km/h
Velocity = 40 km / 0.5hr = 80 km/h
Answer:
about 14.7°
Explanation:
The formula for the angle of the first minimum is ...
sin(θ) = λ/a
where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.
The wavelength of the sound is the speed of sound divided by the frequency:
λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m
Then the angle of interest is ...
θ = arcsin(0.261538/1.03) ≈ 14.7°
At an angle of about 14.7°, someone outside the room will hear no sound.