Domains are the highest ranking of organisms in taxonomy. They are notably Bacteria, Eukarya, and Archaea
In his experiment mendel first crossed tall and short peas plant and noticed that the F1 plants were all tall. in the second experiment he crossed the the F1 plants and noticed that short plants reappeared in the rate of 25% in F2 generation. in his third experiment he crossed he crossed F2 plants and noticed that when he crossed some tall plants with the shot plants the F3 generation contained short plant in frequency of 50%. after this observations mendel concluded that there were genes that could be only expressed in homozygous state but not in heterozygous state. these genes were later referred to as recessive alleles wheres the genes that prevented the expression of recessive genes were later referred to as dominant genes.
The tributaries carry small amounts of salt into the lake
<u>Explanation</u>:
The Greatest salt lake is one of the most saline inland water body in the world.The water carried to this lake by the tributaries is very less as compared to the amount of the salt present in the lake. Rest part of the salt remains in the lake as such.
When the water from the lake gets evaporated, it leaves behind the salt. When time passes by, or years of inflow and evaporation salts they gets deposited layer over layer. The amount of salt added leads to formation of new minerals on the sea floor.
Answer:
Chromista
Explanation:
Chromista is a biological kingdom consisting of some single-celled and multicellular eukaryotic organisms, which share similar features in their photosynthetic organelles (plastids).
Answer: The relationship between blood pressure and heart rate responses to coughing was investigated in 10 healthy subjects in three body positions and compared with the circulatory responses to commonly used autonomic function tests: forced breathing, standing up and the Valsalva manoeuvre. 2. We observed a concomitant intra-cough increase in supine heart rate and blood pressure and a sustained post-cough elevation of heart rate in the absence of arterial hypotension. These findings indicate that the sustained increase in heart rate in response to coughing is not caused by arterial hypotension and that these heart rate changes are not under arterial baroreflex control. 3. The maximal change in heart rate in response to coughing (28 +/- 8 beats/min) was comparable with the response to forced breathing (29 +/- 9 beats/min, P greater than 0.4), with a reasonable correlation (r = 0.67, P less than 0.05), and smaller than the change in response to standing up (41 +/- 9 beats/min, P less than 0.01) and to the Valsalva manoeuvre (39 +/- 13 beats/min, P less than 0.01). 4. Quantifying the initial heart rate response to coughing offers no advantage in measuring cardiac acceleratory capacity; standing up and the Valsalva manoeuvre are superior to coughing in evaluating arterial baroreflex cardiovascular function.
Explanation: