Please go into more detail about the question then u will be able to help you
Answer: I think the answer is B
Step-by-step explanation:
Answer:
Individuals end to continue paying the premiums of the automobile insurance as a habit. However, serious thoughts and putting in element of strategizing helps to reduce the premium in most cases. At times, there is a sudden like on the part of the insurer even for a flawless driver.
A good look up and research of the insurance websites can be of real help in comparing whether a better deal is offered by the other insurance companies, or whether a certain change in the policy or small adjustments of the term would give benefit to the customer.
In case a speeding ticket is received, or an accident is mentioned in the driving history, it is maintained there in for a period of three to five years. Thus, the premium increases substantially. A change of insurer is advised in such situations, where a major search for an insurer, who does not pay that much importance to these details, is to be carried on.
Again, having a teenager driver in the family calls for a caution as the insurance premium increases drastically in such occasion. Having clean driving record of the parents, or kids commuting to far away schools without cars help in such situation.
Using the <em>normal distribution and the central limit theorem</em>, it is found that there is a 0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean and standard deviation , the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation .
In this problem:
- The mean is of 660, hence .
- The standard deviation is of 90, hence .
- A sample of 100 is taken, hence .
The probability that 100 randomly selected students will have a mean SAT II Math score greater than 670 is <u>1 subtracted by the p-value of Z when X = 670</u>, hence:
By the Central Limit Theorem
has a p-value of 0.8665.
1 - 0.8665 = 0.1335.
0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
To learn more about the <em>normal distribution and the central limit theorem</em>, you can take a look at brainly.com/question/24663213
Answer:
4
Step-by-step explanation:
Given that:
Total yards of satin bought by Maddie = yards
Number of yards required make one ribbon = yards
To find:
Number of complete bows that can be made ?
Solution:
First of all, let us learn about converting the mixed fraction to fractional form.
Formula:
Therefore, total yards of satin bought by Maddie can be written in fractional form as:
One hair bow requires yards of ribbon.
Number of hair bows that can be made, can be found by dividing the total ribbon length by ribbon required for making one hair bow.
Answer is:
4 hair bows can be made.