Answer:
238,485 Joules
Explanation:
The amount of energy required is a summation of heat of fusion, capacity and vaporization.
Q = mLf + mC∆T + mLv = m(Lf + C∆T + Lv)
m (mass of water) = 75 g
Lf (specific latent heat of fusion of water) = 336 J/g
C (specific heat capacity of water) = 4.2 J/g°C
∆T = T2 - T1 = 119 - (-20) = 119+20 = 139°C
Lv (specific latent heat of vaporization of water) = 2,260 J/g
Q = 75(336 + 4.2×139 + 2260) = 75(336 + 583.8 + 2260) = 75(3179.8) = 238,485 J
The most dramatic astronomical development of the century thus far is the detection of gravitational waves from merging black holes at a distance of 400 Mpc, during the first science run of the advanced Laser Interferometer Gravitational-Wave Observatory.
The telescope was also very important. Galileo Galilei was the first person to use a telescope to look at celestial bodies (though he did not invent the telescope) and discovered the four brightest moons of Jupiter, proving that there are things in the Solar System that don't revolve around the Sun.
Physical cosmology is the branch of physics and astrophysics that deals with the study of the physical origins and evolution of the Universe. It also includes the study of the nature of the Universe on a large scale. In its earliest form, it was what is now known as "celestial mechanics", the study of the heavens.
Hope this helps you :)
Answer:
Using the coarse adjustment knob of the microscope in high power may lead to the breaking of the slide if adjusted and raised the slide too much which can damage the sample as well as the high power lens.
In this case, I would recommend using the fine adjustment knob and moving away from the end of the viewing area of the microscope so there would no collision take place. The fine adjustment will help to get a clear image.